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In this article, we examine the steady motion of two fluids in a porous medium with a 
stationary interface. We obtain exact solutions to plane and axisymmetric problems of the 
motion of a drop. The laws governing the motion of the drop are linked with the mechanism 
of decay of the displacement front at the nonlinear stage. 

As is known, in the displacement of a viscous fluid from a porous medium by a fluid 
having a lower viscosity, the interface between the two fluids is unstable. Small perturba- 
tions of the interface grow rapidly and assume the form of fingers at the nonlinear stage. 
Periodic solutions of the plane problem were examined in [1-3]. Tryggvason and Aref [4, 5] 
numerically studied the evolution of small periodic perturbations of a plane interface, 
assigning the disturbances in the form of superimposed perturbations of different periods. 
The investigators not only obtained fingers in the nonlinear stage, but they also observed 
their breakup into drops. 

It is interesting to attempt to analytically describe a drop and single fingers moving 
in a porous medium. 

i. Formulation of the Problem. A drop composed of a given fluid is moving in a vis- 
cous fluid of a different nature. The viscous fluid is being filtered in 'an infinite, uni- 
form, porous medium. The fluid comprising the drop is bounded by the surface S. The poten- 
tial ~ of the filtration velocity u satisfies the Laplace equation 

A~I.2 = 0. (i.i) 

Here and below, the subscript 1 denotes the region outside the drop, while 2 denotes the 
internal region. Away from the surface S of the drop, we assign a constant filtration ve- 
locity 

V~I--->-V~,  r - -~  ~ .  ( 1 . 2 )  

Conditions of impermeability of the boundary S to the flo~, with the boundary moving 
at the velocity u yield two boundary conditions for the surface of the drop: 

a~1 s ~ a~2 s an ~ = (Von)" ( 1 . 3 )  

The condition of continuity of the pressure at the boundary leads to a third boundary condi- 
tion which includes the absolute viscosities ~l, ~2: 

~l~lls : ~2~Is + const, (1.4) 

Problem (1.1)-(1.4) is a Steady-state problem with an unknown free boundary S contain- 
ing the velocity of the drop V 0 as a parameter. 

The internal problem for ~2, with boundary condition (1.3), has a unique solution - the 
potential of the uniform flow ~2 = V0x, where x is the coordinate in the direction of motion 
of the drop (or z). 

An attempt can be made to find exact solutions to the problem of a drop by examining 
bounding surfaces that can be described by second-order equations. Here, it is natural to 
make use of the corresponding orthogonal coordinates u, v. In these coordinates, the bound- 
ary condition for ~i (1.3) is written in the form 
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~ o% I 
Oy v = v  o = ~ v = v  o" 

( 1 . 5 )  

Here, v = v0 is the equation of the surface of the drop S. For the sake of simplicity, we 
will henceforth examine the situation in which filtration velocity away from the drop V~ and 
the velocity of the drop V0 are co!inear. 

2. Plane Problem of the Motion of a Parabolic Drop= If we attempt to solve the plane 
problem of a drop with a parabolic contour, it turns out to be convenient to make use of 
parabolic coordinates u, v. In these coordinates, Eq. (i.i) has the same form that it does 
in Cartesian coordinates. 

The potential of the external flow r consists of the sum of the potential of the uni- 
form flow and a potential of the form 8v, where the constant $ is determined by condition 
(1.5): ~i = V~x - (V0 - V~)v0v. Inserting the expressions for the potentials of the ex- 
ternal and internal flows into boundary condition (1.4), we find the velocity of a parabolic 
drop 

Vo = V ~ : / ~ .  ( 2 . 1 )  

The above solution corresponds to the limiting situation in the problem of the motion of a 
bubble between two solid walls [ii, when the ratio of the width of the bubble to the width 
of the channel approaches zero. 

3. Motion of an Axisymmetric Paraboloid of Filtering Fluid. We will examine an axi- 
symmetric problem concerning the motion of a displacement front of parabolic form. The so- 
lution in the region external to the paraboloid has the form 

~1 = V~z - -  (V o - -  V~) v~ In v. 

Dynamic boundary condition (1.4) is satisfied if the filtration velocity inside the 
paraboloid is determined by (2.1), i.e., if it coincides with the velocity of a plane para- 
bolic drop. it is interesting that the velocity of a paraboloid of filtering fluid is inde- 
pendent of the curvature at its vertex. The solution is valid for a one-parameter family of 
paraboloids. 

4. Plane Elliptical Drop. To describe the motion of an elliptical drop, it is con- 
venient to use elliptical coordinates. In the plane case, this includes cofocal u-hyper- 
bolas and v-ellipses [6]. The solution is sought in a manner similar to that described 
above, as the superposition of the potential of the unidimensional flow on the one hand and, 
on the other hand, the potentials $ sinuexp(-v) and $ cos uexp(-v) for prolate and oblate 
ellipses. Using (1.5) to find the coefficient 6, we obtain expressions for r in the cases 
of prolate and oblate ellipses: 

q~l = ~z s i n  u(V~  c h  v + ( V ~  - -  Vo) s h  v o e x p  (vo - -  v)) ,  

0 1  = ~z cos  u ( V ~  s h v  -6  (Voo - -  Vo)ch  vo e x p  (v o - -  v)). 

We use condition (1.4) to find the velocity ratio 

Vo/V= = (~ + g)/(~ + g), ~ = ~2 /~ .  (4.1) 

Here, g = X for a pro!ate ellipse and g = • for an oblate ellipse; X = v~--i-~-f is the 
ratio of the semiaxes; 6 = cosh-lv0 is the eccentricity. It can be seen from (4.1) that the 
velocity of a plane elliptical drop depends considerably on the degree of its deformation. 

5. Motion of an Ellipsoidal Drop. Let a drop of fluid occupy the volume of an ellip- 
soid of revolution. Proceeding analogously to Part 4, we will use u-hyperboloids and v- 
ellipsoids as the coordinate surfaces. The form of the Laplace equation for these coordi- 
nates was presented in [6]. The potential of the external flow ~l is sought in the form of 
the superposition of the potential of the unidimensional flow V~z and a potential of the 
form sin(u)(c2Q1(coshv) + c Icoshv) for a prolate ellipsoid and cos (u)(c2Q1(isinhv) + 
c I sinhv) for an oblate ellipsoid (Q1(x) is a second-order Legendre function with the index 
i). The constant c I is determined on the basis of the condition that the function be real 
and be bounded at v § ~. After this, the potential is expressed for prolate and oblate el- 
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lipsoids by means of the formulas r = ~sinu(V=coshv + $(coshv • arctanh(cosh v) - i)) and 
@i = ~cosu(V~sinhv + ~(sinhv arccot (sinhv) - I)). Satisfying boundary conditions (1.4)- 
(1.5), we find the velocity ratio and 6: V~/V0 = i + (I - i)~+,_, $ = gz(l - l)V0 sinh2v0/ 
2. Here, we have the following for a prolate ellipsoid of revolution 

% = 8 -2 -- (6 -2 -- 1)8-%rth (5, gl ---- sh v0, 

while for an oblate ellipsoid of revolution 

~_ = I - -  (5-2 ~_ (5-3~? I - -  (5 2 a r c t g  ( ( 5 / ] / 1  - -  62), g~ ~- - - c h  v o. 

(5.1) 

(5.2) 

When the eccentricity of the ellipsoid approaches unity - with the prolate ellipsoid 
being transformed into a "needle" and the oblate ellipsoid into a disk - the formulas (5.1)- 
(5.2) for the velocity coefficient ~ take the form 

~+ ~ I + ( i  - 6) in  ( l  - ~ ) , ~ _  ~ ( ~ / ~ - ~ l / l  - 6. ( 5 . 3 )  

It follows from this that an oblate ellipsoid of revolution moves at nearly the same velocity 
at which the surrounding fluid is being filtered, while a prolate ellipsoid moves at a veloc- 
ity which is greater by a factor of Pl/P2. In the case of small eccentricity, Eqs. (5.1)- 
(5.2) yield 

% ~ (2/3)(1 ~ 62/5), ~ _  ~ (2 /3 ) ( t  - -  62/5). 
(5.4) 

If I = P2/Pz < i, then the oblate drop will move more slowly than the prolate drop. For 
plane drops with small 6, formulas analogous to (5.4) follow from (4.1)-(4.2). Meanwhile, 
V~/V 0 = (I + 1)/2. For highly prolate or oblate plane drops, when 6 = i, Eqs. (4.1)-(4.2) 
give the same velocities as (5.3). 

The dependence of the velocity coefficient of an ellipsoidal drop on the degree of its 
deformation ~(X) is equal to the ratio of the semiaxes of the ellipsoid (the semiaxis along 
the axis of revolution - in the denominator), is shown in Fig. i. It is evident from the 
figure that drop velocity is heavily dependent on the deformation of the drop. It is in- 
teresting that a highly prolate drop moves at the same velocity as a parabolic "tongue," 
in accordance with (2.1), (4.1), and (5.1). 

If ~2/PI > i, then the velocities of both oblate and prolate drops are lower than the 
fluid velocity at infinity. Thus, they converge with the displacement front if they are 
ahead of it and lag behind the front if they are behind it. The displacement front is ob- 
viously stable in the first case and unstable in the second case. 

It is significant that the velocity of a prolate elliptical drop at I > 1 is I times 
lower than the fluid velocity at infinity. Thus, in order to have a certain volume of vis- 
cous (relative to water) oil be displaced by water, a substantial amount of water will have 
to be pumped if the oil is distributed in the form of prolate drops. 

It is also interesting that - as follows from the above formulas - prolate drops with 
a small internal viscosity ~2 < ~i overtake less prolate drops. Meanwhile, highly oblate 
drops move slowest of all. Thus, the most stable prolate drops move ahead of the displace- 
ment front. This effect was observed in photographs in the experimental study [7], where 
a prolate drop catches up with a less prolate drop and combines with it. The opposite effect 
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is seen for the more viscous fluid which lags behind the displacement front. Here, the most 
prolate drops lag the farthest behind the front. 
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NONSTEADY THERMAL CONVECTION IN A HORIZONTAL CYLINDER WITH A 

NONUNIFORM DISTRIBUTION OF THE TEMPERATURE OF THE BOUNDARIES 

B. G. Petrazhitskii and N. M. Stankevich UDC 536.25 

Many studies have examined natural convection in a horizontal cylinder. Nonsteady 
natural convection in closed rectangular and spherical cavities was examined in [I, 2]. A 
survey of different studies can be found in [3J, while the latest publications are discussed 
in [4]. Some of these investigations consider the effect of a nonuniform distribution of 
the temperature of the boundaries. In particular, Gershuni et al. [5] and Ostrakh et al. 
[6J used approximate analytical methods to obtain information on local and integral charac- 
teristics of the given phenomenon in a steady-state regime. The authors made several sim- 
plifying assumptions that limited the range of application of the results. Thus, the data 
in [5] was obtained in a boundary-layer approximation, while the data in [6] is valid only 
for large Prandtl numbers and for Grashof numbers on the order of unity. The range of phase 
angles corresponding to cosine distributions of boundary temperature 0 < ~ < ~/2 (Fig. i), 
except for the region of the points ~ = 0 (heating from the side) and ~ = z/2 (heating from 
below). 

A numerical solution to the problem was described in [7] for-w/2 < ~ < v/2. Extensive 
information was presented on the streamlines and isotherms for different ~ and Pr = i. In 
contrast to the present study, the results in [7] pertain only to the steady-state regime 
and contain no information on velocity and temperature fields or local heat-transfer charac- 
teristics. 

We attempted to solve the complete system of Navier-Stokes equations by numerical meth- 
ods to obtain data on the process of establishment of a steady-regime and fill in the missing 
data for it for the range 104 < Ra < 107 and Pr = 0.68 (helium) at -~/2 < ~ ~ 0. 

The given phenomenon has several important practical applications and is described by 
the system of equations of motion, continuity, and energy. We will study the two-dimensional 
laminar flow of an incompressible fluid with constant physical properties and a linear tem- 
perature dependence of density. After we exclude pressure and introduce the stream function 
~, this system takes the following form in polar coordinates (r, @) for the conditions of 
the given problem (w is curl and ~ is temperature): 
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